小升初数学知识点【荐】
在平时的学习中,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。还在为没有系统的知识点而发愁吗?下面是小编精心整理的小升初数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
小升初数学知识点1
一、等式、方程与代数
1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
2.方程式:含有未知数的等式叫方程式。
3.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
4.代数: 代数就是用字母代替数。
5.代数式:用字母表示的式子叫做代数式。
如:3x =ab+c
二、数量关系计算公式
单价×数量=总价
单产量×数量=总产量
速度×时间=路程
工效×时间=工作总量
加数+加数=和
一个加数=和 - 另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
三、表面积和体积
1.三角形的面积=底×高÷2。 公式 S= a×h÷2
2.正方形的面积=边长×边长 公式 S= a2
3.长方形的面积=长×宽 公式 S= a×b
4.平行四边形的面积=底×高 公式 S= a×h
5.梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
6.内角和:三角形的内角和=180度。
7.长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
8.正方体的表面积=棱长×棱长×6 公式: S=6a2
9.长方体的体积=长×宽×高 公式:V = abh
10.长方体(或正方体)的体积=底面积×高 公式:V = abh
11.正方体的体积=棱长×棱长×棱长 公式:V = a3
12.圆的周长=直径×π 公式:L=πd=2πr
13.圆的面积=半径×半径×π 公式:S=πr2
14.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
15.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
16.圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
17.圆锥的体积=1/3底面×积高。公式:V=1/3Sh
四、常用单位换算
1.长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
2.面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
3.体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升
4.重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
5.时间单位换算
1世纪=100年 1年=12月
大月(31天)有:18 月
小月(30天)的有:49月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天
1日=24小时 1时=60分 1分=60秒 1时=3600秒
五、数学常用公式
1.平均数: 总数÷总份数=平均数
2.和差问题:(和+差)÷2=大数 (和-差)÷2=小数
3.和倍问题:和÷(倍数-1)=小数
小数×倍数=大数 (或者 和-小数=大数)
4.差倍问题:差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
5.相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
6.追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间
7.流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
8.浓度问题
溶质的.重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
9.利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
10、盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配 的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数
1.圆周率常取数据
3.14×1=3.14
3.14×2=6.28
3.14×3=9.42
3.14×4=12.56
3.14×5=15.7
3.15×6=18.84
3.14×7=21.98
3.14×8=25.12
3.14×9=28.26
2.常用特殊数的乘积
25×3=75
25×4=100
25×8=200
125×3=375
125×4=500
125×8=1000
625×16=10000
37×3=111
3.常用平方数
112=121 122=144 132=169 142=196
152=225 162=256 172=289 182=324
192=361 102=100 202=400 302=900
402=1600 502=2500 602=3600 7702=4900
802=6400 152=225 252=625 352=1225
452=20xx 552=3025 652=4225 752=5625
852=7225
4.关于常用分数与小数的互化
1/2=0.5 4=0.25 3/4=0.75 1/5=0.2 2/5=0.4
3/5=0.6 4/5=0.8 1/8=0.125 3/8=0.375 5/8=0.625
7/8=0.875 1/20=0.05 3/20=0.15 7/20=0.35
9/20=0.45 11/20=0.55 1/25=0.04 2/25=0.08
3/25=0.12 4/25=0.16 6/25=0.24
5.常用立方数
13=1 23=8 33=27 43=64 53=125
63=216 73=343 83=512 93=729
小升初数学知识点2
一、专题解析
有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法帮助解题。
解答火车行程问题可记住以下几点:
1、火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;
2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;
3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。
二、火车过桥问题常用方法
⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.
⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.
⑶火车与火车上的人错身时,只要认为人具备所在火车的'速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.
对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。
三、例题解析
1、火车过桥问题习题及答案
一列火车通过360米长的铁路桥用了24秒钟,用同样的速度通过216米长的铁路桥用16秒钟,这列火车长米.
考点:列车过桥问题.
分析:这道题让我们求火车的长度.我们知道:车长=车速×通过时间-桥长.其中“通过时间”和“桥长”都是已知条件.我们就要先求出这道题的解题关键:车速.通过审题我们知道这列火车通过不同长度的两个桥用了不同的时间.所以我们可以利用这两个桥的长度差和通过时间差求出车速.
解答:解:车速:(360-216)÷(24-16)
=144÷8
=18(米),
火车长度:18×24-360=72(米),
2、火车过桥练习题
1、一列火车长150米,每秒钟行19米。全车通过长800米的大桥,需要多少时间?
2、甲火车长290米,每秒行20米,乙火车长250米,每秒行250米,两列火车在平行的轨道上同向行驶,刚好经过一座900米的铁桥,当甲火车车尾离开桥的一端,同时乙火车车头刚好驶上桥的另一端,经过多长时间乙火车完全超过甲火车?
3、甲、乙两人在与铁路平行的马路上背向而行,甲骑车每小时36千米,乙步行每小时行3.6千米,一列火车均速向甲驶来,从甲旁开过用了10秒中而在乙旁开过用了21秒,问火车的长和速度分别是多少?
4、一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)
5、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?
小升初数学知识点3
1、 整数的意义 自然数和0都是整数。
2 、自然数
我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。例如15÷3=5,所以15能被3整除,3能整除15。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和约数是相互依存的。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的.和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个因数,这样的数叫做质数,100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
1
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2×2×7
几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
如果两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、 ??
3的倍数有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
小升初数学知识点4
1比和比例:
比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.
2.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
3.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
4.比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。
5比和比例的意义
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!
6比和比例的联系:
比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。
小学数学长方体和正方体知识点
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的'长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4???正方体的棱长总和=棱长×12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2?? S=(ab+ah+bh)×2
正方体的表面积=棱长×棱长×6??用字母表示:S=
6、表面积单位:平方厘米、平方分米、平方米?相邻单位的进率为100
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长×宽×高???用字母表示:V=abh??长=体积÷(宽×高)宽=体积÷(长×高)
高=体积÷(长×宽)
正方体的体积=棱长×棱长×棱长??用字母表示:V= a×a×a
9、体积单位:立方厘米、立方分米和立方米?相邻单位的进率为1000
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;
把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。
13、容积单位:升和毫升(L和ml) 1L=1000ml? 1L=1000立方厘米?? 1ml=1立方厘米
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
小学数学0的含义是什么
1、没有任何东西
2、数轴的前点(原点)
3、可以表示分界
4、可以表示起点
5、可以起到占位作用
小升初数学知识点5
年龄问题的三大规律:
1.两人的年龄差是不变的;
2.两人年龄的倍数关系是变化的量;
3.随着时间的推移,两人的年龄都是增加相等的量.
年龄问题的核心是:大小年龄差是个不变的量,而年龄的倍数却年年不同。
解答年龄问题的一般方法是:
几年后年龄=年龄差÷倍数差一小年龄,
几年前年龄=小年龄一年龄差÷倍数差。
1、父亲现年50岁,女儿现年14岁.问:几年前父亲年龄是女儿的5倍?
解析:父女的年龄差是50-14=36岁。年龄差是不变的。当父亲的年龄是女儿的5倍的'时候,父亲比女儿大了5-1=4倍。因此,36岁是父亲比女儿多的4倍年龄。那么,当时女儿的年龄是36÷4=9岁。
因此,14-9=5年前父亲的年龄是女儿的5倍。
如果公式熟练的话,就是:14-(50-14)÷(5-1)=14-9=5
10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?
解析:根据15年后吴昊的年龄是他儿子年龄的2倍,得出父子年龄差等于儿子当时的年龄.因此年龄差等于10年前儿子的年龄加上25岁。
10年前吴昊的年龄是他儿子年龄的7倍,父子年龄差相当于儿子当时年龄的7-1=6倍。
由于年龄差不变,所以儿子10年前的年龄的6-1=5倍正好是25岁,可以求出儿子当时的年龄,从而使问题得解。
解:①儿子10年前的年龄:(10+15)÷(7-2)=5(岁)
②儿子现在年龄:5+10=15(岁)
③吴昊现在年龄: 5×7+10=45(岁)
4、甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在的岁数时,你将有67岁,甲乙现在各有:
A.45岁,26岁B.46岁,25岁C.47岁24岁 D.48岁,23岁
解析:下面是推理过程:假设甲乙的年龄差为X
则根据甲的假设,当甲是乙现在的年龄时,乙是4岁。则乙现在的年龄是4+X
因为甲乙的年龄差是X,那么甲现在的年龄是4+2X
因此,根据乙的假设,当乙的年龄是4+2X时,甲的年龄是4+2X+X=67
因此X=(67-4)/3=21
乙的年龄(67-4)/3+4=25岁,甲的年龄是4+21*2=46岁
5、今年父亲年龄是儿子年龄的10倍,6年后父亲年龄是儿子年龄的4倍,则今年父亲、儿子的年龄分别是( )
A.60岁,6岁 B.50岁,5岁 C.40岁,4岁 D.30岁,3岁
解析:依据“年龄差不变”这个关键和核心,今年父亲年龄是儿子年龄的10倍,也即父子年龄差是9倍儿子的年龄。6年后父亲年龄是儿子年龄的4倍,也即父子年龄差是3倍儿子的年龄(6年后的年龄)。依据年龄差不变,我们可知
9倍儿子现在的年龄=3倍儿子6年后的年龄
即9倍儿子现在的年龄=3×(儿子现在的年龄+6岁)
即6倍儿子现在的年龄=3×6岁
儿子现在的年龄=3岁
小升初数学知识点6
小升初数学所有知识点(重要)
体积和表面积
三角形的面积=底×高÷2。 S= a×h÷2
正方形的面积=边长×边长S= a2
长方形的面积=长×宽公式S= a×b
平行四边形的面积=底×高S= a×h
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6公式:S=6a2
长方体的体积=长×宽×高公式:V = abh
长方体(或正方体)的体积=底面积×高公式:V = abh
正方体的体积=棱长×棱长×棱长V = a3
圆的周长=直径×π L=πd=2πr
圆的面积=半径×半径×π S=πr2
圆柱的侧面积:圆柱的侧面积=底面的周长×高S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积=底面的周长×高+圆的面积×2
S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积=底面积×高。 V=Sh
圆锥的体积=1/3底面积×高。 V=1/3Sh
单位换算
长度单位:
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
面积单位:
1平方千米=100公顷1公顷=10000平方米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1亩=666.666平方米。
体积单位
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升1毫升=1立方厘米
重量单位
1吨=1000千克1千克= 1000克= 1公斤= 1市斤
算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:
①、在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
②、O除以任何不是O的数都得O。
③、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:
被除数=商×除数+余数
9、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数:代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:
同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:
同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
倒数的概念:
1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。
2.1的倒数是1,0没有倒数。
3、分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:
1、分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变;
2、分数的除法则:除以一个数(0除外)=乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的`分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式
单价×数量=总价2、单产量×数量=总产量
速度×时间=路程4、工效×时间=工作总量
加数+加数=和一个加数=和-另一个加数
被减数-减数=差减数=被减数-差被减数=减数+差
因数×因数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=商×除数
比
什么叫比:
1、两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
2、比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:
1、表示两个比相等的式子叫做比例。如3:6=9:18
2、比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数)
小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数:公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数
1既不是质数也不是合数。,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:个位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:个位是0,5。
奇数与偶数
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
偶数±偶数=偶数奇数±奇数=奇数奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数≠偶数
小升初数学知识点7
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4???正方体的棱长总和=棱长×12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2?? S=(ab+ah+bh)×2
正方体的表面积=棱长×棱长×6??用字母表示:S=
6、表面积单位:平方厘米、平方分米、平方米?相邻单位的进率为100
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长×宽×高
用字母表示:V=abh长=体积÷(宽×高)宽=体积÷(长×高)
高=体积÷(长×宽)
正方体的体积=棱长×棱长×棱长??用字母表示:V= a×a×a
9、体积单位:立方厘米、立方分米和立方米?相邻单位的进率为1000
10、长方体和正方体的.体积统一公式:长方体或正方体的体积=底面积×高V=Sh
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;
把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。
13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
小学数学0的含义是什么
1、没有任何东西
2、数轴的前点(原点)
3、可以表示分界
4、可以表示起点
5、可以起到占位作用
拓展:
小升初数学备考比和比例知识点
1.比的意义:两个数相除又叫做两个数的比。
比例的意义:表示两个比相等的式子叫做比例。
2.求比值:比的前项除以比的后项所得的商叫做比值。
3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。
比例的基本性质:在比例里,两个外项的积等于两个内项的积。
4.应用比的基本性质可以化简比;
应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。
5.用字母表示比与除法和分数的关系。
a:b=ab=(b0)
6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。
7.图上距离:实际距离=比例尺
或=比例尺
实际距离=图上距离比例尺 图上距离=实际距离比例尺
8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。
化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。
9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
用式子表示:=k(一定),用图表示正比例关系是一条直线。
10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
用式子表示:xy=k(一定),用图表示反比例关系是一条曲线。
十.简单的统计
1.常见的统计图有条形统计图、折线统计图和扇形统计图。
2.条形统计图特点:(1)用一个单位长度表示一定的数量。(2)用直条的长短来表示数量的多少。 作用:从图中能清楚地看出各数量的多少,便于相互比较。
折线统计图的特点:(1)用一个单位长度表示一定的数量。(2)用折线的起伏来表示数量的增减变化。 作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。
十一.公式的整理
平面图形:
1.长方形:
周长=(长+宽)2 C长=(a+b)2
面积=长宽 S长=a b
2.正方形:
周长=边长4 C正=a4
面积=边长边长 S正=aa
3.平行四边形的面积=底高 S平=ah
4.三角形的面积=底高2 S三=ah2
5.梯形的面积=(上底+下底)高2 S梯=(a+b)h2
6.圆的周长=直径3.14 C圆=d
圆的周长=半径23.14 C圆=2r
圆的面积=半径的平方圆周率 S圆=r2
立体图形:
1.长方体
表面积=(长宽+长高+宽高)2 S长表=(ab+ah+bh)2
体积=长宽高 V长=abh
2.正方体
表面积=棱长棱长6 S正表=aa6
体积=棱长棱长棱长 V正=a3
3.圆柱
侧面积=底面周长高
表面积=侧面积+两个底面积
体积=底面积高
4.以上立体图形的表面积、体积可以统一成公式为:
表面积=底面周长高+两个底面积 体积=底面积高
5.圆锥的体积=圆柱的体积3 V锥=sh3
小升初数学知识点8
1、循环小数的计算
两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。
从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。
2、分数一元一次方程的求解
其实很简单,只要孩子能够把过程规范好!
1.去分母(同乘分母的最小公倍数)
2.去括号(运用乘法分配律,注意减号后面的括号去掉时要变号!!30%以上的孩子至今未解决这个问题!!!)
3.移项并合并同类项,保证字母在一边,数字在另一边。(注意不要跳步,以免孩子粗心出错。)
4.化系数为1,求出解来。(记得解一定把x写作左边,得数写在右边)
3、乘法分配律和提取公因数
知识点都会,就是易错。
要想提好公因数,一定要学会动笔前先观察算式,以下是考察提取公因数的常用方式:
1.最简单的障眼法是把一个数写成不同的形式,比如可以写成小数、假分数、带分数、百分数,从而隐藏了公因数,这就需要我们熟练这些形式之间的互化,还有一颗火眼金睛;
2.利用积不变的方式发掘公因数,比如某个数乘以37加上某个数乘以74,看似没有公因数,但是74等于2乘以37,因此某个数乘以74可以变成这个数的2倍再乘以37,从而出现了37这个公因数;
3.最隐蔽的一种,就是乘除互化,乘以1.2和除以5/6本质上其实是一样的,通过把除法化为乘法后即可出现公因数,因此拿到一个类似的问题,先把每一项都转化为乘法,再去寻找公因数会比较高效。
4、连锁约分和整体约分
约分是分数乘除法特有的巧算技巧点。能够把很多复杂不好计算的部分通过约分约去,从而达到简化计算的目的。要理解透这两种约分,只需把它们的起源找到就很简单了。
5、换元
换元体现了“整体打包”这种经典的数学思想。这种用抽象的未知数来代表一个复杂的数或算式的思维方式对习惯了具体数的四则运算的小学生来说还是很有挑战的.。
6、裂项
总的来讲,它的难度很高。不过由于大多数小升初裂项题都很简单,因此有的孩子会选择图方便去死记住规律。这样其实非常危险,第一,现在雅系的小升初考试裂项难度远超普通题,只会做最简单的裂项是远远不够的;第二,公式中有一些细节容易被记错,如果没有理解的辅助,在真实考试的紧张状态下很容易出错。
小升初数学知识点9
解方程,求方程的解的过程叫做解方程。
⒈含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
⒉使等式成立的未知数的值,称为方程的解,或方程的根。
⒊解方程就是求出方程中所有未知数的值的过程。
⒋方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
⒌验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的'值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
⒍注意事项:写“解”字,等号对齐,检验。
⒎方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)
小升初数学知识点10
平均数
基本公式:①平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
①求出总数量以及总份数,利用基本公式①进行计算。
②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的.和,就是所求的平均数,具体关系见基本公式②
经典例题:
例1、一个学习小组在一次数学测验中,小红得100分,小明得98分,小兰得96分,小平得90分,平均每人多少分?
解 (100+98+96+90)÷4=96(分)
答:平均每人96分。
【解题关键与提示】
先求出总成绩和总人数,然后求出平均数。
例2、 一辆汽车前2小时每小时行42千米,后3小时每小时行40千米,平均每小时行多少千米?
解 (42+40)÷(2+3)
=82÷5
=16.4(千米)
答:平均每小时行16.4千米。
【解题关键与提示】
先求出行的总路程和总时间,然后求出平均数。
例3、某校少先队组织了4个采树种小组,采摘树种支援大西北的绿化。第一天采到15千克,第二天采到20千克,第三天采到19千克。(1)平均每天采到树种多少千克?(2)平均每组采到树种多少千克?(3)平均每组每天采到树种多少千克?
解(1)(15+20+19)÷3=18(千克)
(2)(15+20+19)÷4=13.5(千克)
(3)(15+20+19)÷3÷4=4.5(千克)
答:平均每天采到18干克树种,平均每组采到13.5千克树种,平均每组每天采到4.5千克树种。
【解题关键与提示】
平均的总数是共采到的树种数,始终不变;按什么“单位”平均,三个问题的要求各不相同:问题(1)要求按“天数”平均;问题(2)要求按“组数”平均;问题(3)要求按“每组每天”平均。
以上是为大家分享的小升初数学知识点平均数,希望能够切实的帮助到大家,同时希望大家能够在考试中取得优异的成绩!
小升初数学知识点11
一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;
常规方法:观察法、试验法、枚举法;
多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;
多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;
涉及知识点:列方程、数的整除、大小比较;
解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;
技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数。
例1.一队旅客乘坐汽车,要求每辆汽车的'乘客人数相等,起初每辆汽车乘22人,结果剩下一人未上车;如果有一辆汽车空车开走,那么所有旅客正好能平均分乘到其它各车上.已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少旅客?
答:起初有24辆汽车,有旅客22x+1=529(名).
例2.小王用50元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为200分、80分、30分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?
答:小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.
例3.一次数学竞赛准备了22支铅笔作为奖品发给一、二、三等奖的学生,原计划发给一等奖每人6支,二等奖每人3支,三等奖每人2支,后来改为一等奖每人9支,二等奖每人4支,三等奖每人1支,问:获一、二、三等奖的学生各几人?
答:获得一等奖的有1人,获得二等奖的有2人,获三等奖的有5人.
小升初数学知识点12
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如: 5表示求5个的和是多少?
2、分数乘分数是求一个数的几分之几是多少。
例如: 表示求的是多少?
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a b = b a
乘法结合律: ( a b )c = a ( b c )
乘法分配律: ( a + b )c = a c + b c
二、分数乘法的解决问题
(已知单位1的量(用乘法),求单位1的几分之几是多少)
1、画线段图:
(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位1: 在分率句中分率的前面; 或 占、是、比的后面
3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数。
4、写数量关系式技巧:
(1)的 相当于 占、是、比相当于 =
(2)分率前是的: 单位1的量分率=分率对应量
(3)分率前是多或少的意思: 单位1的量(1分率)=分率对应量
三、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的`倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。 因为10乘任何数都得0,(分母不能为0)
4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
小升初数学知识点13
一、小学数学算术定义定理公式:理解并会应用是关键;
二、小学数学基础运算公式:记准公式并会灵活应用,关键是公式的逆用和变形应用;
三、运用四则运算规则巧算:题型不同,方法不同,抓住特点,灵活应用;
四、小学数学常见几何图形的周长、面积(阴影部分的面积计算是关键)、体积计算公式
公式的推导是关键,并会进行逆用和变形应用;
五、小学数学单位换算公式:
记准进率是关键,大变小乘定律,小变大除定率;
六、小学数学热点问题运算公式(常见奥数题公式):
重点和难点
1、和差问题的公式:
(和+差)÷2=大数(和-差)÷2=小数
2、和倍问题:
和÷(倍数+1)=小数小数×倍数=大数或(和-小数=大数)
3、差倍问题:
差÷(倍数-1)=小数小数×倍数=大数或(小数+差=大数)
4、植树问题:
(1)非封闭线路上的植树问题主要可分为以下三种情形:
①如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)
②如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
③如果在非封闭线路的两端都不要植树,那:株数=段数-1=全长÷株距-1
全长=株距×(株数+1)株距=全长÷(株数+1)
(2)封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
5、盈亏问题
一盈一亏问题:(盈+亏)÷两次分配量之差=参加分配的份数
两盈问题:(大盈-小盈)÷两次分配量之差=参加分配的份数
两亏问题:(大亏-小亏)÷两次分配量之差=参加分配的份数
6、行程问题:
相遇问题:相遇路程=速度和÷相遇时间相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题:追及路程=速度差×追及时间追及时间=追及路程÷速度差
速度差=追及路程÷追及时间
7、流水问题
顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2
8、浓度问题
溶质的重量+溶剂的重量=溶液的重量浓度=溶质的'重量÷溶液的重量×100%
溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量
9、销售问题:(利润与折扣问题)
利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)
10、工程问题
工作效率×工作时间=工作总量工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
以上应用题的类型在往年的小升初考试中反复出现,要善于从题目中提取有用的信息,弄清各个量之间的关系,并正确解答。
小升初备考建议
针对几年的考题特点和趋势,小学六年级学生20xx年小升初的数学复习应该注意以下几个方面:
1、复习的时候要“博而精”,不能一味的追求“深度”,不能只看重历年来的重要考点。学习最根本的任务是把基础知识掌握透,一味钻研难题、偏题对整式考试的帮助并不大。
2、平时练习、复习的时候要注重综合能力的提升。只会一道题是不行的,要举一反三,推广到一类题;会一类题也不能浅尝辄止,要多看多练多研究,学会把各类型的题和考点点整合在一起,遇到什么问题都能够找到思路。
3、多练多总结,认真对待错题,准备错题集。
小升初数学知识点14
一、分数除法
1、分数除法的意义:
乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
规律(分数除法比较大小时):
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
[ ]叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
二、分数除法解决问题
(未知单位1的量(用除法): 已知单位1的几分之几是多少,求单位1的量。 )
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是的: 单位1的量分率=分率对应量
(2)分率前是多或少的意思: 单位1的量(1分率)=分率对应量
2、解法:(建议:最好用方程解答)
(1)方程: 根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 分率对应量对应分率 = 单位1的量
3、求一个数是另一个数的几分之几:就 一个数另一个数
4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位1的量 或:
① 求多几分之几:大数小数 1
② 求少几分之几: 1 - 小数大数
三、比和比的应用
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表示)
∶ ∶ ∶ ∶
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:
比前 项比号:后 项比值
除 法被除数除号除 数商
分 数分 子分数线分 母分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的.关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
(2)用求比值的方法。注意: 最后结果要写成比的形式。
如: 15∶10 = 1510 = 3/2 = 3∶2
5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如: 已知两个量之比为,则设这两个量分别为。
路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
小升初数学知识点15
1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的.小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
3、在小数除法中的发现:
①当除数大于1时,商小于被除数。如:3.5÷5=0.7
②当除数小于1时,商大于被除数。如:3.5÷0.5=7
4、小数除法的验算方法:
①商×除数=被除数(通用)②被除数÷商=除数
5、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。
6、循环小数问题:
小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。
【小升初数学知识点】相关文章:
小升初的数学知识点04-11
小升初数学必考知识点03-29
小升初数学重要知识点04-04
小升初数学知识点05-20
【经典】小升初数学知识点05-21
(经典)小升初数学知识点05-28
小升初数学知识点总结03-05
小升初数学知识点(优秀)05-21
[优选]小升初数学知识点05-27
(实用)小升初数学知识点总结03-10